aat 65,
ingeles, ",Lﬁ% PHYSI cA ﬁ\&

m. The

ELSEVIER Physica A 237 (1997) 257-284

m, MA

Explicit thermostatics of Stanley’s n-vector model
on the harmonic chain by Fourier analysis

Georg Junker *, Hajo Leschke, Ingbert Zan

Institut fiir Theoretische Physik, Universitdt Erlangen-Niirnberg, Staudtstr. 7, D-91058 Erlangen,
Germany

Received 1 October 1996

Abstract

Thermostatic properties of Stanley’s classical n-vector model on the harmonic chain are
field of studied. It is shown that this model belongs to a rather general class of classical spin mod-
oscopic els in one dimension. The members of this class are characterized by spins which are elements
samical of a homogenous space with transformation group G and a G-mvariant and exchange-invariant
spin-pair interaction. For the derivation of basic thermostatic quantities and correlation functions
we use the method of abstract Fourier analysis. This allows to derive rather explicit results for
any member of the aforementioned class of spin models. We present an exact closed-form ex-
pression as well as a high- and a low-temperature expansion for the free energy of Stanley’s

| n-vector model on the harmonic chain. From this basic thermostatic quantities like internal en-

mes pet ergy, entropy and heat capacity are obtained. Furthermore, we present results for expectation
values of one-spin and two-spin functions. From the latter it is possible to derive the zero-field
susceptibility and it also allows for a discussion of magnetostrictive effects.

=d) mail PACS: 75.10.Hk; 02.30.Px; 05.50.+q
quiries) Keywords: Classical spin models; Abstract harmonic analysis; Lattice theory and statistics; Ising
+ North problems

15.3432;
$1-5047;
17-2230; 1. Introduction
Exactly solvable one-dimensional models have always been and still are of consider-

+44(0) ablc interest in statistical mechanics [1]. These models often may serve to caricature the
51 2500; behaviour of certain quasi-one-dimensional substances. Moreover, they “give us some
x +81 insight into what is going on and also provide a valuable testing ground for approx-

imation methods which are often applied to higher dimensional problems” [2]. Both
\n, The arguments even apply in the classical limit. In contrast to one-dimensional quantum
ir speed models, classical ones often allow for a complete analytical treatment.
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The aim of this paper is to provide in detail exact and explicit thermostatic results for
a one-dimensional classical “spin” model, namely, Stanley’s classical n-vector model on
the harmonic chain [3]. In particular, the influence of the coupling between rotational
and vibrational degrees of freedom is obtained for all values of n>1. For the Ising
case (n = 1) this has been done earlier by Mattis and Schultz (see Appendix of [4]
and also p. 108 of [5] and references therein) with emphasis on the phenomenon of
magnetostriction. Clearly, for zero coupling our results reduce to thosc of Stanley [6]
for all a.

The method we are going to use is that of abstract Fourier (or harmonic) analysis
known from the theory of group representation. The application of group-theoretical
methods for the evaluation of spin models has, according to our knowledge, for the
first time been used by Joyce [7] in an exact solution for the one-dimensional and in
a high-temperature expansion of the higher-dimensional classical Heisenberg (r = 3)
and planar rotator model (n = 2). For a more general class of classical models in one
dimension a group-theoretical approach is due to Romerio and Vuillermot [8]. These
authors have calculated the eigenvalues of the transfer matrix using the method of
abstract Fourier analysis. Unfortunately, these group-theoretical methods have not found
much attention for the evaluation of classical spin models. Only in connection with
lattice-gauge theories the Fourier analysis has been used in strong-coupling expansions
[9]. For this reason, we will present the method of abstract Fourier analysis as applied
to a rather general class of classical spin models in full detail.

We proceed as follows. In the next section, we introduce Stanley’s #-vector model on
the harmonic chain and derive an effective spin Hamiltonian which takes into account
the effect of the vibrational degrees of freedom. In Section 3 we construct a rather
general class of classical spin models of which the n-vector model is a particular
member. One characteristic property of this class of models is that their spins take
values in a homogeneous space. This property together with a transformation-invariant
and exchange-invariant spin-pair interaction allows for an explicit evaluation of basic
thermostatic properties. Section 4 presents explicit results for the partition function
and static expectation values of one-spin and two-spin functions. A general formula
for the correlation length is also presented. In Section 5 we discuss these results for
the particular n-vector model we are interested in. Finally, in Section 6 we compare
our approach with that of Romerio and Vuillermot [8] and also point out further
possible applications of the method presented. In two appendices we discuss the effect
of boundary conditions on thermostatic properties of the finite chain (Appendix A) and
consider (Appendix B) a particular subclass of models whose spins take values in a

group.

2. The n-vector model on the harmonic chain

The many-body system the thermal equilibrium properties of which we want to
derive can be described as follows. Consider the one-dimensional Bravais lattice £Z
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with lattice constant /£ > 0 and a set of N 4 1 point particles all of mass m > 0
spaced along the Euclidean line R at positions j£ +¢; (f = 1,...,N + 1). Denoting
the momentum of the jth particle by p; € R, the Hamiltonian Hy defined by

N+l N
_ 1 2, M o 2
Hy = %gijr“z"wo;(%—Qﬁl) 1)

characterises the nearest-neighbour coupled harmonic chain with “spring constant”
mw§. It models the energy of the vibrational degrees of freedom of a (quasi-)one-
dimensional monoatomic crystal in the harmonic approximation, that is, under the as-
sumption that for any two atoms the difference q; — g of their deviations from their
respective lattice sites jZ and j'¢ is sufficiently small [10].

We assume now that each particle carries a set of internal rotational degrees of
freedom which we collectively represent by a classical spin, that is, by a unit vector
S; in the n-dimensional Euclidean space R” for some fixed n € {1,2,...}. The simplest
rotational invariant interaction between the spins of two nearest neighboured particles
corresponds to an energy of the form —W;S;-8;,1, where the interaction strength W;
should vary with the actual interparticle distance according to W; = W(¢ 4+ gj+1 — q;)
with some real-valued even function x — W(x) independent of ;. In accordance with
the harmonic approximation we retain only the first two terms in a Taylor expansion
of W:

W +qin—q))=J +(g+1 — ;). (2.2)

Here we have set J := W(¢) and n := W'(¢). Under thesc assumptions the total
spin-interaction energy is given by the Hamiltonian

N
Hyi= =Y (T + @ —a)1)8) Sy (23)

j=1

and the total Hamiltonian for the vibrational and rotational degrees of freedom is the
sum

H:=Hy+H . (2.4)

It characterises the many-body system we are actually going to study in a purely
classical treatment.
By introducing the new particle coordinates (cf. [4,5] for n = 1)

j—1

xn=q, szij—;’g%ZSk-Sk+l, j=23,..,N+1, (2.5)
0 k=1

the Hamiltonian (2.4) can be rewritten as

H = Hvib + Hspin (2-6)
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with a vibrational part

| N - N
. 2 2 Y
Hyp = - JZ:‘ pj+ 5o j;(xj — Xjt1) (2.7)
and a spin part
N ﬂg
qum = _Z(Jsj‘sj+] +K(Sj'Sj+1)2) , K = W?O (28)
J=1 0

Obviously, the vibrational and rotational degrees of freedom are decoupled in the new
coordinates. Since the thermal properties of the harmonic chain are well known (see,
for example, [10]), we will concentrate on the derivation of those related to the spin-
chain Hamiltonian (2.8). To this end, we will employ abstract Fourier analysis in the
spirit of Joyce {7] and Romerio and Vuillermot [8].

Special cases of the spin-chain Hamiltonian (2.8) have already been discussed in
the literature. In the absence of spin-vibrational coupling, X = 0, it corresponds to the
well-known n-vector model introduced [6] and extensively discussed [6, 11] by Stanley.
For vanishing spin-spin coupling, J =0, and #n € {2,3} the thermostatic properties of
the spin chain (2.8) have been derived by Vuillermot and Romerio [12]. As for the
Ising case (n = 1), we remark that the biquadratic term in (2.8) lowers the specific
free energy of the Ising chain simply by the constant K. However, even for n = 1 this
term is responsible for magnetostrictive effects of the full system (2.6), as discussed
by Mattis and Schultz [4,5]. As an aside we mention that a quantum version of (2.8)
is of interest in connection with Haldane’s conjecture [13].

3. Generalization of the model

In this section we will embed the model (2.8) into a class of one-dimensional clas-
sical spin systems previously suggested by Romerio and Vuillermot [8]. We are going
to describe this class in three steps.

Let us begin with the definition of the “spin space” M. We will assume that this
space is a homogeneous space with transformation group G. That is, for each pair
(5,50) € M x M there exists a group element g € G such that

S =gS. (3.1)

An element or point § of the space M will be called “spin” throughout this paper.
Furthermore, we will assume that the group G is compact. This assumption assures the
existence of a unique normalized invariant measure dg on G [14, p. 131; 15, p. 67],
i.e., the normalized Haar measure. Normalization means that

G/ dg=1 (3.2)
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and invariance means invariance under left and right shifts as well as under inversion:

[wr@ = [ dasa= [ 4= [ dar67) (33)

G G G G

for all integrable complex—valued functions f : G — C and all gy € G.
The normalized Haar measure dg induces a G-invariant probability measure dS on
the spin space M [14, p. 143; 15, p. 128], which may be defined by

[dSF(S) :=/dgF(gSo)= (3.4)

M G

where Sy € M is fixed and F : M — C is such that the mapping g — F(gS) is
integrable with respect to dg. The measure dS is independent of the particular choice
of §y. Its normalization

f ds =1 (3.5)

M

and G-invariance

/dSF(ggS):/dSF(S) (3.6)
M

M

are direct consequences of the properties (3.2) and (3.3) of dg and guarantees a
uniform a priori probability distribution on M.
As any homogeneous space, M can be identified with the group quotient G/Gy where

Gy :={g € G|gSo = S} (3.7)

is the isotropy group of some fixed Sy € M. Different choices for the particular point
Sy correspond to different but equivalent realizations of M in terms of G/Gy. In the
following we will consider only the case where Gy is non-trivial in the sense that Gy
does not only consist of the unit element e, Gy # {e}. For the special case Gy = {e}
see Appendix B.

Having set up the spin space M = /Gy we can, in a second step, introduce a
G-mvariant and exchange-invariant spin-pair interaction V : M x M — R:

V(gS,gSYy=V(S5,8)=V(s,S) forall geG. (3.8)

It is also convenient to define for a given Sy the following function

og) == j 45 V(§9S0,35) = V (S0, 4S0) - (3.9)
G

It can easily be verified using (3.8) that

V(S8 )=uv(g 'g) =g 'g). (3.10)
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where § =: ¢Sy and 8" =: ¢'S;. It is obvious that v is invariant under arbitrary left and
right shifts of Gj:

v(g) = v(hgh'y for all h K € Gy. (3.11)

Such functions on G are called zonal spherical functions [16,17,p.31; 14, p. 227].
Therefore, for a non-trivial isotropy group Gy we will assume that the pair interaction
is characterized by a zonal spherical function.

In a third step for the definition of the class of spin chains we set up the Hamiltonian.
To a given set of N +1 spins {Si,...,S8y;+1} CM and an invariant pair interaction (3.8)
we associate an interaction energy by the sum

N N N
H =Y V(SpSm) =Y o(g; gr) = D v(g714)) - (3.12)
j=1 j=1 j=1
When one views S; as the spin attached to the jth lattice site of the one-dimensional
Bravais lattice Z, the energy {3.12) can be interpreted as the Hamiltonian of a classical
spin chain with nearest-neighbor interaction.

The basic thermostatic propertics of such a spin chain can be derived from the canon-
ical partition function Z for the finite chain, as a function of f, in the macroscopic
limit N — oo. Here kgf denotes the inverse absolute temperature and kp Boltzmann’s
constant. Clearly, for the finite chain one has to impose boundary conditions the de-
pendence of which will disappear for N — oo (see also Appendix A). Here we will
work with open boundary conditions for which the partition function is defined as

Z:zdel---/dSN+1 exp{—pH#'}

M M
N
_ / dgy - - / dgw -1 [] exol{-Bog; g0} (3.13)
G G j=1

In the above we have utilized (3.4) and (3.12) to express the integrals over the spin
space M by integrals over the group G.

Correspondingly, the equilibrium cxpectation value of a gencral complex—valued
(N + 1)-spin function A4 : (Sy,...,8v 1) — A(S1,...,Sy,1) is defined by

N
1 _
(4) = 7 / dg, / dgN+1A(ngg,...,gN+1Sg)Hexp{—ﬁv(gj lgj_H)} .
G G J=1

(3.14)

Up to now we have used a notation which implicitly assumes that the transformation
group G is continuous. Even so, the formulations are easily changed to the case of finite
groups. For a finite group the group integrals have to be understood as normalized sums
over the group elements, that is, [ dg(-) = (1/|G|)>_ gsec(*) where |G| stands for the
order of the group G. For example, in the Ising model where M ~ 7, := {—1,+1},
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we have fG dg(\) = % gsez,(+) (see also Appendix B). More general classical discrete
spin models with finite symmetry groups are extensively discussed by Moraal [18].

It is obvious that the model we are mainly interested in, the n-vector model defined
by (2.8), belongs to the class of models characterized in this section. For A one has to
choose the (n — 1)-dimensional unit sphere embedded in R”, which may be identified
with the quotient SO{n)/SO(n— 1). For the spin-pair interaction characterized by (3.10)
one has to choose

w(g) = —J (So - 9S0) — K (So - 9So)* . (3.15)

4. Exact evaluation by Fourier analysis

In this section we will perform the calculation of the partition function and certain
expectation values for models belonging to the class defined in Section 3. We will
utilize the symmetry of these models by applying abstract Fourier analysis. This idea
dates back at least to the pioneering works of Joyce [7] and Romerio and Vuillermot
[8].

For a simple presentation of Fourier analysis on M = G/Gy we will make the further
(technical) assumption that M is a symmetric homogeneous space. For such spaces it
is known [19] that the Hilbert space L2(M) can be uniquely decomposed into an
orthogonal sum of invariant subspaces 2/, L*(M) = ®,;c412*. Each of these subspaces
carries a unitary irreducible representation D'(g). These are called representations of
class one relative to Gy [17]. The set A is the equivalence class of all unitary irreducible
representations of class one of the group G. A further property of these subspaces
7! is that they contain exactly one vector, denoted by |,0), being invariant under
transformations of the subgroup Gy, that is, D'(h)|{,0) = |/,0) for all & € Gy. The
set of diagonal matrix elements D}y (g) := (/,0|D*(g)|1,0) = (D{m(g‘l))*, I e 4,
forms a complete set in the linear subspace of zonal spherical functions and obeys the
orthonormality relation [17, p. 47]

_ . Sy _ }
f dg’Df)o(g lg')D(llo(g’ IQ”) = %Déo(g 19”) , dp:=dim 7 (4.1)
G

Throughout this paper, we will reserve the value / = 0 for the one-dimensional trivial
representation which is always contained in the set A. This implics Dgo(g) =1 for all
g and hence by unitarity

ID{o(9)] <D%(g) - (4.2)

By the completeness of the set {D},} the zonal spherical function exp{—fv(g)} can
be (abstractly) Fourier expanded as follows:

exp{—po(g)} = Y _ d; 1(B) Dip(g) , (43)

leAd
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where the Fourier coefficients are defined by

24(B) = [ dg expl Po@)}Dlale™"), T€A. (4.4)

G

These coeflicients obey the strict inequality

(B < Ao(B), 1#0. (4.5)

This is a comsequence of (4.2) in combination with (4.1) for 7/ = 0 and / # 0.
It should also be noted that despite the fact that the matrix elements Di,(g) are in
general complex, the Fourier coefficients (4.4) are real. This is a direct consequence
of the symmetry (3.10).

With the decomposition (4.3) we can put the partition function (3.13) into the form

N
Z:fdgl"'f dGNHszz,-it,-(ﬁ)Dé’b(gflgjﬂ)- (4.6)

G G j=l1lea

Using the orthonormality (4.1) we can immediately perform (N — 1) integrations to
obtain

/ dg, / dovi 3 i (BT DhoaT aw 1) - @7)

lea

Using again (4.1) in combination with DJ,(g) = 1 we can perform the remaining two
integrations to arrive at the simple expression

= [ - “8)

As a consequence, the basic thermostatic properties of the corresponding spin chain
are completely determined by the Fourier coefficient A9(f) of the trivial representation
which is just the average of the Boltzmann weight exp{—fuv(g)} for the spin-pair
interaction with respect to the normalized Haar measure:

Jo(B) = / dg exp{—pu(g)} = / dS exp{— BV (S, S)} (49)
M

G

Fourier analysis is not only useful for the calculation of the partition function but also
allows for simple and straightforward calculations of equilibrium expectation values.
For simplicity we will consider only two-spin functions 4 : M xM — C. The calculation
of their expectation values can be done similarly to that of the partition function. The
result is

A ¥
(A}, Sy )) = Zdl( ’(ﬁ)) [ 4o [ a0 Dot 9 rsasy,  @10)
G &}

— \A(p)

where 1<j < j+r<N + 1. This expression can be simplified further by introducing
a function as in (3.9):
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a(g) = / 4G A(GaSo, GS) . @.11)
G

Obviously, a is a zonal spherical function with Fourier coefficients

a i / dga(g) Dio(g ") (4.12)
G

Making the substitution g — g'g in (4.10) one arrives at the simple relation

p)y
A(S;, Si0)) = d —= ] . 4.13
5.510) = e (G (413)

Let us also briefly consider expectation values of spin-one functions A(S,S’) = 4,(S)
which may be called “generalized magnetizations”. In this case the function (4.11) is
a constant, a(g) = ay, and the magnetization explicitly reads

(41(S))) = ap = / dS 4,(S) . (4.14)

M

This expectation value is independent of the spin “position” j and, more importantly,
does not depend on the temperature. It is just the uniform average of A;(S) over the
spin space M. The reason for this result is, of course, the symmetry (3.11) of the pair
interaction. A non-trivial magnetization can only arise if one allows for an explicit
breaking of the postulated symmetry of the Hamiltonian, for example, by switching on
an external magnetic field. The relation (3.11), which was essential in the derivation
of (4.14), is then no longer sufficient to arrive at (4.14).

The expressions derived so far in this section are valid for the finite chain as they
stand. The simple dependence of the partition function (4.8) on the chain length N
and the N-independence of the expectation value (4.13) are direct consequences of
our choice of open boundary conditions. Results for other boundary conditions are a
bit more complicated and some of them will be given in Appendix A for illustrative
purposes.

The basic thermostatic properties of the spin chain are determined by the free energy
per spin in the macroscopic limit N — oo,

1 1 1

In Ao(B) , (4.15)
which only depends on the Fourier coefficient of the trivial representation. In con-
trast, to the general two-spin expectation values (4.13) all other Fourier coefficients
contribute.
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The general result (4.13) also allows to obtain a fairly explicit expression for the
(inverse) corrclation length defined as follows:

1

E(B) T rmoo N

Obviously, it can be put into the form

_ io(ﬁ))]l
$a(B) = [ln (pA(ﬁ) , (4.17)

where p(f) == sUp;_sp4,20 |A(B) < Ao(B).
Let us now make use of the results of this section to derive thermal equilibrium

properties of the n-vector model introduced in Section 2.

5. Explicit results for the n-vector model on the harmonic chain

The spins of the n-vector model defined by Hy,y, in (2.8) take values in the (n — 1)-
dimensional unit sphere which may be represented by the group quotient SO(#)/SO(n—
1). Let us choose for the fixed vector S, the unit vector pointing in the direction of
the ath coordinate axis in the embedding space R". We may obtain any vector §; via
a rotation in R". Let g; be the corresponding (» x n)-rotation matrix being an element
of $O(n). Then any spin configuration on the chain can be obtained from the fixed
vector Sy by

szng(), j=L...N+1. (5.1)
Obviously, the Hamiltonian Hy,, is of the form (3.12). Note that
8, it = (8;50) - (9518711) = So - (g7 ' gj4150) - (5.2)

Furthermore, the vector Sy is invariant under all rotations about itself which form the
subgroup Go(So) = SO(n—1). In other words, the spin space may, indeed, be identified
with the group quotient SO(r)/SO(n — 1).

Before we start to calculate the Fourier coefficients A;(f) defined in (4.4) we recall
some basic properties of the unitary irreducible class-one representations of SO(n)
[15,17,19]. The complete set of such representations is given by 4 = {0,1,2,...}
and the Hilbert space decomposes into an orthogonal sum of irreducible subspaces as
follows, L2(SO(n)/SO(n — 1)) = @, 2". The representation D'(g) in each of these
subspaces has dimension

r(+n-2)
rl+)It—-1)"

dy=2l+n-2) (5.3)

where I denotes Euler’s gamma function. Let us choose a complete orthonormal basis
in @' by |L,v), v = 0,1,...,d; — 1 where, according to the general procedure of

lim lim [; ln|(A(Sj,Sj+,))—a0|} . (4.16)
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Section 4, we have defined |/,0) such that D(h)[1,0) = |/,0) for all 2 € SO(n — 1).

The corresponding matrix element explicitly reads

r(+1)I(n-2)
I'l+n-2)

Diy(g) = CP P (cos0), (5.4)
where Cj are Gegenbauer polynomials and 6 is the angle of the rotation represented
by the group element g. In particular, the / = 1 representation has dimension » and
thus represents the matrices in (5.1) which map S, to S;, i.e, D'(g) = ¢. In this
representation space |1,0) = Sy and the scalar product reads

;- Siv1 = So-D'(g79;41)S0 = Dio(g; 'gj41) - (5.5)

We are now prepared for the calculation of the Fourier coefficients. From the general
expression (4.4) we read off

J(B) = / dg exp{AIDky(g) + BKIDL(9)} Dly(g)
SO(n)

T +DI(n—-2) [
C VRT(SHI( 40 -2) J

xC"P2(cos )

_rd+1)rn-2) oo (10
rg+n-2) ! BaJ

For the second step we have made use of the explicit form of the real matrix elements
{5.4) and of the normalized Haar measure dg on SO(n) [17]. As they stand, the above
expressions are only valid for » > 2. However, by setting n = 2 in the final results
derived below one gets correct expressions for the planar—rotator chain, too. For the
Ising limit # | 1 some more care has to be taken. Actually, it is better and simpler to
discuss the Ising model separately, as for this case the (two) Fourier coefficients can
be obtained in closed form (sec Appendix B). Closed-form expressions of (5.6) for
arbitrary » > 1 and />0 we know only for X = 0,

dfsin""? 0 exp {BJ cos 6 + BK cos® 0}

) Ao(B) . (5.6)

n—2

2 I
() = I'(n/2) (Ej) It n-2y2(BT) , (5.7)
or for J =0,
Dap(py = LEDLP 1) s b p 1 1/2:2p 4 mj2: ) |

VEL(2p + n/2) (5.8)
;1.2p+1([)’)=0, p:0,1,2,... .
Here 1, denotes the modified Bessel function of order v and |F)(a; b; -) stands for the

confluent hypergeometric function with parameters a and b. The result (5.7 ), which has
already been given by Stanley [6,20], can be obtained from standard integral tables.



268 G. Junker et al | Physica A 237 {1997} 257-284

See, for example, formula (7.321) of [21]. The result (5.8) for / = 2p = 0 can be
obtained from an integral representation of the confluent hypergeometric function (see,
for example, Eq. (9.211.2) in [21]) and has already been given for » = 2 and 3 in
[12]. The general result for odd / is obvious and for even / = 2p > 0 is obtained
by expressing the Gegenbauer polynomial in terms of a hypergeometric function and
using the integral (7.523) of [21]. In addition we have made use of the following two
properties of a generalized hypergeometric function:

I'(ai + p)I(az + p) I'(b1)
Fla)) I (a) I (by + p)I'(p+1)
X2y + pay + p;by + p,p+ 152),

(5.9)

p

1- . b . —
bz_l)rln_P Ty W(ay, a0 b1, b2;2)

afa(a, p+ b, p+ 1;2) = 1 Fi(a; b; 2) .
5.1. Basic thermostatic properties

Basic thermostatic properties of the Hamiltonian (2.8) can be obtained from (5.6)
for [ =0 (see (4.15)):

I'(n/2)

I8y — ML)
D= Zren

+1
/ dr eﬁ(JH—Ktz)(l _ 12)(nw3),/2 ) (510)
5

An expansion in powers of f|.J|, fK and K/|J|, respectively, allows for an explicit
integration and leads to the following series representations:

e o)

_ I'(n/2) (BJ/2)*
Aa(P) = ZO T(n/24+r)T(r + 1)

1Py (r+ 557+ 5 BK)

o [(n/2) T(r + 1/2) (BK Y 1.1 . B
an VAT 0T+ 1) 2 (’”*2’2’” 4 )

_ sk 2 T I'(n/2)I(r + 1) (g{g r
—° (ﬁ!JI) gr(”;—l)r(r+21) 7] LBV, (5.11)

NI

where (73(a; b,c; +) is a generalized hypergeometric function [22,23]. The first sum can
explicitly be performed [24] leading to another generalized hypergeometric function of
two variables [22,23]:

JoBy=oxp {8} ¥2 (53, 1K, 52 ) (5.12)

Somewhat more illuminating representations can be found in the particular cases # =
1,2 and 3, where Ag(f) can be expressed in terms of hyperbolic, Bessel and confluent
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hypergeometric functions, respectively [25]:

Zo(B) = ™ cosh(BJ) forn=1,
Sy e D) (2K _
Jo(f) = ¢ Zﬂ DT D ) HED for n=2,

Ao(B) = %e—ﬂf?‘/w

J 13 J\?
(”512) o (z’z’ﬁK (”—zK) )
J 13 J\?
+(1—5]~€) 1 (E,E,ﬂK(l—E) )} forn=3.

(5.13)

In the following we list some of the relevant thermostatic quantities (per spin, in the
macroscopic limit) and their dependence on the function § — A4(B):

Free energy: F(p)= —% In Ay(8), (5.14)

Inernal cnergy: - £(8) = 37 [BF(D] = ~4(B)/ialB), (5.15)

Entropy: S(B) = ksBLEB) ~ F(B)] = ks [In 2a(B) — BA(B)alB)] .
(5.16)

- _ L EB) 16’(5)_(16(3))2
Heat capacity:  C(p) kgf 2 kg i:/lo(ﬁ) 7o(f) .

(5.17)

As Jg(B) is an even function of the spin-coupling constant J, all quantities listed
above depend only on the absolute value |J|, that is, they cannot discriminate be-
tween ferromagnetic and antiferromagnetic coupling. Note that Aj(f) := d4o(8)/df and
25 (B) := & 4o(B)/0B have integral representations similar to that of (5.10).

The behaviour of these thermostatic quantities as functions of §|J| and K/|J| can be
studied by a numerically exact integration and by expansions of the integral (5.10) for
small and large §|J|.

We have performed a numerical calculation for the internal energy and the heat
capacity. Fig. 1 shows the internal energy versus the temperature 1/kzB for spin di-
mension # = 3 and various values of the spin-vibrational-coupling parameter X. Fig. 2
displays the temperature dependence of the internal energy for fixed parameter K = |J|
and various spin dimensions #. In Figs. 3-5 we plot the heat capacity as a function
over the 1/B|J|-K/|J|-plane for spin dimension n = 2, 3 and 4, respectively. All three
figures show the common feature that the specific heat attains a global maximum near
the point (1/p|J|.K/|/]) =~ (1,4). For a fixed K > K the heat capacity as a function
of the temperature shows two maxima. The first maximum is located near 1/8|J| =~ 1
whereas the location of the second one appears to depend linearly on the value of K.
For n =2 and 3 the first maximum (near 1/f|J|) acquires a value for the heat capacity
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Fig. 1. The internal energy (5.15) as a function of the temperature for spin dimension # = 3 and various
values of the spin-vibrational-coupling constant K as indicated.

-0.2

E(B) /1]

0 0.5 1 1.5 2 2.5 3
1/814]

Fig. 2. Same as Fig. 1 but for fixed spin-vibrational coupling K/|J| = 1 and various spin dimensions ».

which is larger than the value of the second maximum. However, for # = 4 the situa-
tion is reversed. The valuec of Ky for the three cases n = 2, 3 and 4 is approximately
given by 25, 15 and 10, respectively.

A Taylor-series expansion of the integrand in (5.10) in powers of fJ leads to the
following high-temperature series:

oo k
Jo(B) =" (%i) (5.18)
k=0

OS]
4!4;

o

.
=
A
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Fig. 3. The heat capacity (5.17) as a function of the temperature and the spin-vibrational coupling constant
A for spin dimension n = 2.

with coefficients

) -:r(f)zpj rQj+2p+1)(£)”
PN ST )TRp—2j+ DTG+ p+ DI + p+nf2)”
—r(A)y. r@j+2p+3)(£)""
T ST )T @p -2+ DIG = p+ TG p 1 4n2)
(5.19)
The first few coefficients explicitly read

_ _ %K 2, (KY 2

Yo = » 'yl“'nja },Z_n 27 n(n_l_z):
; (5.20)

_ K 24 K 160

B wtn+2) "\27) nnrmtd)

With this power series in fJ we have, for example, a complete high-temperature
expansion for the quantities listed in (5.14)—(5.17). The leading terms are

F) =~ 5 B2+ 0T, BB =—5 g o,
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Fig. 4. Same as Fig. 3 but for spin dimension # = 3.
v Vv
Sy = ks, BT+ OB ), CB)=kp= f7° + OBy, (521)

where v := 1 + 2(K?/J2)(n — 1)/n(n + 2). The free and internal energies approach in
the high-temperature limit the constant value —K/n. This can also be seen in Fig. 1.
The heat capacity goes to zero for high temperatures (cf. Figs. 3-5). The entropy also
vanishes at f.J = 0.

The integral (5.10) does also allow for a low-temperature expansion which is, in
essence, an asymptotic expansion in powers of 1/f]J|. The derivation of this expansion
is based on the third series representation of Jg given in (5.11). Using the asymptotic
form of the modified Bessel function for large argument one obtains:

A(B)=

r'(n/2) ("2_);';&
v \ | 2

—-BM|

= > (BIN*

[ d i SN :
X n— luk B + n—1
T QK| - 1T

QK/|7|+ 1)
(5.22)
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Fig. 5. Same as Fig. 3 but for spin dimension 7 = 4,
with coefficients u,f: defined in terms of hypergeometric functions
k
= (zx;in}{zi 1) F([(r{ E[(T )/_2]1)—/2!3)?(?+ 0
<aF1 (k55— ) (5.23)

The hypergeometric function in (5.23) is simply a polynomial of degree k in its last
argument. The poles appearing for odd spin dimensions »n due to the third argument
are cancelled by those of the first gamma function appearing in the denominator of the
prefactor. The first cocflicients explicitly read

L (= DEE DRV (-3)n-1)
o=t M T kT 1) 8CK/J[£1)

+_ (- DE+Dn+3)n+5HKIP  (n=3)n— 1)+ 1)+ 3)K/|J]|
Hy = BRK/| £ 1) BOK/I[ £ 1)
n=5n-3)n-1)n+1)
27(2K/|J| £ 1)

(5.24)
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Note that for n = 1 all u,:ct vanish for k21 in accordance with the exact closed-
form result A9(B) = X cosh(BJ) for the